2024年10月百度中文分词如何分词?有哪些比较好的中文分词方案

发布时间:

  ⑴百度中文分词如何分词?有哪些比较好的中文分词方案

  ⑵成熟的中文分词算法能够达到更好的自然语言处理效果,四、对于百度中文分词的理解:基于统计的分词方法得到的词或者句子的权重要高于基于字符串匹配得到的,下面就以信息检索为例来说明中文分词的应用,而如果面对中文信息不采用分词技术,有哪些比较好的中文分词方案中文分词是中文文本处理的一个基础步骤,有哪些比较好的中文分词方案中文分词算法大概分为两大类a.第一类是基于字符串匹配,在百度中文分词中,这类分词算法能很好处理歧义和未登录词问题。

  ⑶百度中文分词如何分词

  ⑷而百度中文分词就是把词按照一定的规格,将一个长尾词分割成几个部分,从而概括一段话的主要内容。在百度中文分词中,百度强调的是:一、字符串匹配的分词方法。我们需要有一定的字符串做基础,就是一段词用字符分开,比如标点符号,空格等。才能够进行分词匹配,我们把这些字符串叫做机械词典。机械词典的个数不定。由每个搜索引擎自己确定。每个机械词典之间还会有优先级。字符串匹配的分词方法最常用的有几种:、正向最大匹配法(由左到右的方向、逆向最大匹配法(由右到左的方向、最少切分(使每一句中切出的词数最小百度中文分词基于字符串匹配举例给大家说明一下:“我想去澳大利亚旅游”正向最大匹配:我想去,澳大利亚旅游逆向最大匹配:我想,想去,澳大利亚,旅游。最少切分:我把上面哪句话分成的词要是最少的“我想去,澳大利亚旅游”这就是最短路径分词法,分出来就只有个词了。另外,不同的搜索的词典不同,分出来的词也不同。二、理解的分词方法。这种分词方法不需要机械词典。这种其实就是一种机器语音判断的分词方法。很简单,进行句法、语义分析,利用句法信息和语义信息来处理歧义现象来分词,这种分词方法,现在还不成熟。处在测试阶段。三、统计的分词方法。这个顾名思义,就是根据词组的统计,发现那些相邻的字出现的频率高,那么这个词就很重要。可以作为用户提供字符串中的分隔符。比如,“我的,你的,许多的,这里,这一,那里”。等等,这些词出现的比较多,就从这些词里面分开来。四、对于百度中文分词的理解:基于统计的分词方法得到的词或者句子的权重要高于基于字符串匹配得到的。就是全字匹配得到的词的权重会高于分开的词的权重。根据自己的观察现在百度大部分都是使用的是正向匹配。百度分词对于一句话分词之后,还会去掉句子中的没有意义的词语。

  ⑸有哪些比较好的中文分词方案

  ⑹中文分词算法大概分为两大类a.第一类是基于字符串匹配,即扫描字符串,如果发现字符串的子串和词相同,就算匹配。这类分词通常会加入一些启发式规则,比如“正向/反向最大匹配”,“长词优先”等策略。这类算法优点是速度块,都是O(n)时间复杂度,实现简单,效果尚可。也有缺点,就是对歧义和未登录词处理不好。b.第二类是基于统计以及机器学习的分词方式这类分词基于人工标注的词性和统计特征,对中文进行建模,即根据观测到的数据(标注好的语料对模型参数进行估计,即训练。在分词阶段再通过模型计算各种分词出现的概率,将概率最大的分词结果作为最终结果。常见的序列标注模型有HMM和CRF。这类分词算法能很好处理歧义和未登录词问题,效果比前一类效果好,但是需要大量的人工标注数据,以及较慢的分词速度。

  ⑺有哪些比较好的中文分词方案

  ⑻中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块。不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性、句法树等模块的效果。当然分词只是一个工具,场景不同,要求也不同。在人机自然语言交互中,成熟的中文分词算法能够达到更好的自然语言处理效果,帮助计算机理解复杂的中文语言。竹间智能在构建中文自然语言对话系统时,结合语言学不断优化,训练出了一套具有较好分词效果的算法模型,为机器更好地理解中文自然语言奠定了基础。在此,对于中文分词方案、当前分词器存在的问题,以及中文分词需要考虑的因素及相关资源,竹间智能自然语言与深度学习小组做了些整理和总结。中文分词根据实现原理和特点,主要分为以下个类别:

  ⑼基于词典分词算法也称字符串匹配分词算法。该算法是按照一定的策略将待匹配的字符串和一个已建立好的“充分大的”词典中的词进行匹配,若找到某个词条,则说明匹配成功,识别了该词。常见的基于词典的分词算法分为以下几种:正向最大匹配法、逆向最大匹配法和双向匹配分词法等。基于词典的分词算法是应用最广泛、分词速度最快的。很长一段时间内研究者都在对基于字符串匹配方法进行优化,比如最大长度设定、字符串存储和查找方式以及对于词表的组织结构,比如采用TRIE索引树、哈希索引等。

  ⑽基于统计的机器学习算法这类目前常用的是算法是HMM、CRF、SVM、深度学习等算法,比如stanford、Hanlp分词工具是基于CRF算法。以CRF为例,基本思路是对汉字进行标注训练,不仅考虑了词语出现的频率,还考虑上下文,具备较好的学习能力,因此其对歧义词和未登录词的识别都具有良好的效果。NianwenXue在其论文《biningClassifiersforChineseWordSegmentation》中首次提出对每个字符进行标注,通过机器学习算法训练分类器进行分词,在论文《Chinesewordsegmentationascharactertagging》中较为详细地阐述了基于字标注的分词法。常见的分词器都是使用机器学习算法和词典相结合,一方面能够提高分词准确率,另一方面能够改善领域适应性。

  ⑾何为分词?中文分词与其他的分词又有什么不同呢?分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段可以通过明显的分界符来简单划界,唯独词没有一个形式上的分界符,虽然英文也同样存在短语的划分问题,但是在词这一层上,中文比之英文要复杂的多、困难的多。

  ⑿中文分词的意义和作用

  ⒀要想说清楚中文分词的意义和作用,就要提到智能计算技术。智能计算技术涉及的学科包括物理学、数学、计算机科学、电子机械、通讯、生理学、进化理论和心理学等等。简单的说,智能计算就是让机器“能看会想,能听会讲”。要想实现这样的一个目标,首先就要让机器理解人类的语言,只有机器理解了人类的语言文字,才使得人与机器的交流成为可能。再反观我们人类的语言中,“词是最小的能够独立活动的有意义的语言成分”,所以对于中文来讲,将词确定下来是理解自然语言的第一步,只有跨越了这一步,中文才能象英文那样过渡到短语划分、概念抽取以及主题分析,以至于自然语言理解,最终达到智能计算的最高境界,实现人类的梦想。

  ⒁从现阶段的实际情况来看,英文已经跨越了分词这一步,也就是说在词的利用上已经先我们一步,并且已经展现了良好的应用前景,无论是信息检索还是主题分析的研究都要强于中文,究其根本原因就是中文要通过分词这道难关,只有攻破了这道难关,我们才有希望赶上并超过英文在信息领域的发展,所以中文分词对我们来说意义重大,可以说直接影响到使用中文的每一个人的方方面面。

  ⒂中文分词主要应用于信息检索、汉字的智能输入、中外文对译、中文校对、自动摘要、自动分类等很多方面。下面就以信息检索为例来说明中文分词的应用。

  ⒃通过近几年的发展,互联网已经离我们不再遥远。互联网上的信息也在急剧膨胀,在这海量的信息中,各类信息混杂在一起,要想充分利用这些信息资源就要对它们进行整理,如果由人来做这项工作,已经是不可能的,而如果面对中文信息不采用分词技术,那么整理的结果就过于粗糙,而导致资源的不可用,例如:“制造业和服务业是两个不同的行业”和“我们出口日本的和服比去年有所增长”中都有“和服”,而被当作同一类来处理,结果是检索“和服”的相关信息,会将他们都检索到,在信息量少的情况下,似乎还能够忍受,如果是海量信息,这样的结果就会令人讨厌了。通过引入分词技术,就可以使机器对海量信息的整理更准确更合理,在“制造业和服务业是两个不同的行业”中“和服”不会被当做一个词来处理,那么检索“和服”当然不会将它检索到,使得检索结果更准确,效率也会大幅度的提高。

  ⒄所以中文分词的应用会改善我们的生活,使人们真正体会到科技为我所用。